
November 2005 www.stsc.hill.af.mil 23

The developers of software systems are
relying on incorporating commercial

off-the-shelf (COTS) software compo-
nents to decrease cost and time to market
for delivery of new software systems.
Increasingly, the procurers of these soft-
ware systems are driving this decision to
consider COTS solutions for significant
functionality. This emergence of COTS
solutions as viable and desirable has
occurred over time and has not been with-
out trials on both sides. It has taken time
for software developers and their cus-
tomers to begin to understand where
COTS solutions will save money and
where they will not. Great strides have
been made in this area, but there is still
much to learn.

As this COTS revolution unfolds,
another issue emerges that impacts the
entire software industry and has particular
ramifications to those developing COTS-
based systems. This issue is the increased
need for security in software systems driv-
en by rapidly growing networking capabil-
ities introduced by leaps in networking
technology and the corresponding leaps in
dependence on this technology. Accord-
ing to the National Strategy to Secure
Cyberspace:

Identified computer security vul-
nerabilities – faults in software and
hardware that could permit unau-
thorized network access or allow
an attacker to cause network dam-
age – increased significantly from
2000 to 2002, with the number of
vulnerabilities going from 1,090 to
4,129. [2]

The Computer Emergency Response
Team Coordination Center at Carnegie

Mellon University, which tracks incidents of
malicious software intrusions, reports a
2,099 percent increase in incidents from
1998 to 2002. These incidents range from
security breaches impacting a single site to
those impacting hundreds of sites [3].
These security breaches cost U.S. industry
and government billions of dollars.

At the same time that purchasers of
software systems are driving solution
providers toward possible cost savings
with a well-implemented COTS-based
solution, they are putting additional
demands on the software developers that
these solutions meet specific software
security criteria. These criteria are general-
ly based on Evaluation Assurance Levels
(EALs) as specified in the Common
Criteria (CC) for Information Technology
Security Evaluation [4] or some analog to
these criteria. The CC sets a standard for
assigning levels of security compliance of
software. This additional requirement for
secure software could clearly throw new
and unexpected complications into the
slowly emerging sense of what drives the
costs of COTS-based software projects.

This article addresses the software
security issue in general and then in the
context of developing COTS-based sys-
tems. It begins with an outline of the
author’s methodology for this research,
then describes and bounds the problem
being addressed. Next, the issues sur-
rounding software security are addressed.
The author then outlines the six steps to a
successful COTS implementation and
addresses how these steps are impacted by
security requirements.

Solution Methodology
The first step in any operations research
project is to identify the problem being

solved. The problem we are attempting to
solve is that of identifying how security
constraints impact the activities involved
in delivering a COTS-based software sys-
tem and how these impacts affect project
costs. This was accomplished using litera-
ture reviews, expert knowledge, and inter-
views with practitioners to supplement the
cost data available.

Once the problem is identified, the
next step in constructing a parametric
cost-estimating solution is to study and
understand the subject process, and from
this construct a mathematical model.
Research led to the development of a
mathematical model based on assump-
tions of productivity standards for each
activity in the process, and adjustments of
these standard values to accommodate for
the additional rigor and processes associ-
ated with elevated security requirements.

This mathematical model was then
exercised by software developers and proj-
ect mangers to determine how it fared
when applied to real-life situations. Once
satisfied that the model was useful for
practitioners, data from various datasets
containing both commercial and aero-
space data was applied to determine where
it worked well and where further work was
required.

Bounding the Problem
COTS-based software solutions can be a
cost effective method for successfully
delivering software systems if these proj-
ects are planned with a proper under-
standing of the activities associated with
the implementation and on-going suste-
nance of COTS-based software systems.
These activities and their cost drivers have
been well defined in [5]. Adding security
constraints to a COTS-based software sys-

Software Engineering Technology

Security in a COTS-Based Software System

Arlene F. Minkiewicz
PRICE Systems

Planning and budgeting for the development of a software system composed primarily of commercial off-the-shelf (COTS)
components presents unique challenges to those with project and process responsibilities. These challenges are further intensi-
fied when security issues are present such as security requirements in the system being developed, security constraints applied
to the development team, or both. Because these security issues may impact the functional size of the software being developed,
the productivity of the development team, and the ability of the team to communicate, they are important considerations when
estimating cost and effort for any software project. They have additional effects when the system is COTS-based. In August’s
CrossTalk, work by this author presented a methodology for approaching COTS-based software projects [1]. This arti-
cle extends that methodology to consider the impacts that security requirements or constraints may impose on each of the activ-
ities in the process. It presents an overview of the causes of security vulnerabilities in software and an understanding of how
to assess what impact security constraints will have on your COTS-based software projects.

 



24 CROSSTALK The Journal of Defense Software Engineering November 2005

tem will affect the execution of some of
these activities and, correspondingly,
change how these activity’s costs should
be evaluated.

In bounding the problem, it is impor-
tant to understand what definition of
COTS is being applied and how security
constraints are measured. To have a mean-
ingful discussion on the costs of COTS
software, it is important to start with a
clear understanding of what is and is not
included when we discuss COTS software.
For this article, we started with the defini-
tion from the University of Southern
California’s Center for Software Excel-
lence study that led to the Constructive
COTS (CoCOTS) model [6]. The defini-
tion of a COTS software product follows:
• Commercially available software prod-

uct – sold, leased, or licensed.
• Source code unavailable but documen-

tation provided.
• Periodic releases with new features,

upgrades for technology, etc.
We found this definition too limiting

for several reasons. It is not consistent
with many of our observations of actual
COTS software integration efforts.
Customization appears to be quite com-
mon, particularly with embedded COTS
software. In creating a general-purpose
solution, it seemed important that we not
overlook the issue of customization. For
this reason the definition was altered to
include off-the-shelf software with source
code available.

We have used the CC as the basis for
evaluating security requirements. It was
developed to provide a standard for secu-
rity criteria and evaluation processes of
that criteria. The CC contains seven hier-
archical sets of assurance requirements
called EAL’s and named EAL1 through
EAL7, with EAL1 representing the least
amount of security and EAL7 represent-
ing the most security. Increasing degrees
of documentation, design rigor, formal
processes, etc. are required as you move
from EAL1 to EAL7.

Software security issues can be
grouped into three categories [7]:
• Development for Security. The

effect of security constraints on the
development of software.

• Operational Security. The effect of
security policies and processes on the
development environment.

• Physical Security. The effect of
developing software in a secure envi-
ronment.
The research in this article only covers

the first two of these categories. Physical
security is left as a future research chal-
lenge.

Software Security
In its report issued March 2004, the
Software Process Subgroup of the Task
Force on Security across the software
development life cycle defines the goals of
software security:

The primary goals of software
security are the preservation of the
confidentiality, integrity, and avail-
ability of the information assets
and resources that the software
creates, stores, processes, or trans-
mits, including the executing pro-
grams themselves. [3] 

In other words, users of secure software
have a reasonable expectation that their
data is protected from unauthorized
access or modification and that their data
and applications remain available and sta-
ble. Clearly some applications have a need
for a much higher degree of assurance
than others. Software designed for stand-
alone desktop use is much less likely to be

subject to threats than multi-user software
intended for use across a network.
Software that is shipping confidential
client information or government secrets
requires more security than the instant
messaging software that is the backbone
of teenage culture.

As increasing security constraints will
increase the cost of developing and main-
taining any software system, it becomes an
important part of the software acquisition
process to understand the required level of
assurance based on the functionality the
software is intended to perform and the end
users who will consume that functionality.

Software security requirements present
themselves in two forms. The first are
those requirements that impose additional
functional requirements for features
specifically related to security. Examples

of these are encryption algorithms, pass-
word protection requirements, or remote
access security procedures. The second
form of security requirements relate to
the additional levels of qualification and
testing required to ensure that the soft-
ware does not allow security breaches into
the system on which it operates or the
data it maintains. These requirements
involve ensuring there are no back doors,
buffer overflows, or defects that allow
entry to hackers. They also require that
patch releases be handled in such a way
that the wise hacker cannot use them as
road maps to the weaknesses in the soft-
ware system.

The functional requirements related to
security impact cost primarily through
increased functional size of the applica-
tion. When the software is being devel-
oped in-house, this additional size drives
design, code, and test activities for these
requirements. When the software is
COTS, this additional size drives integra-
tion and test activities.

Before a conversation can take place
about the cost impacts of compliance to
specific security assurance levels, it is
important to understand the various
COTS selection strategies that might
apply. The selection strategy applied deter-
mines where in the COTS implementation
process the costs will be incurred and
what the extent of those effects might be.
There are basically three choices an inte-
grator has when selecting COTS compo-
nents for a software system:
• Buy and wrap.
• Buy only pre-certified components.
• Buy components and certify internally.

The buy-and-wrap option indicates that
the integrator intends to purchase the
COTS components that best meet the
functional requirements for the software.
The integrator will then develop a glue
code wrapper that operates around this
component, isolating it so that any securi-
ty threats inherent in the COTS compo-
nent cannot be reached through the result-
ant applications.

An integrator who opts to buy only pre-
certified components intends to limit evalua-
tions to COTS components from vendors
that have certified their components to
the required level of compliance. This
reduces the integrator’s development and
integration effort, but limits the selections
and is likely to increase the purchase and
maintenance costs of the COTS compo-
nents. It may also lead to the necessity to
develop more in-house functionality if
properly certified components are unavail-
able for some functional requirements.

The option to buy components and

“Despite the advances
that the software

industry has made in
development practices

and processes, the buffer
overflow continues to be
the most frequently cited
security vulnerability ...”

Software Engineering Technology



November 2005 www.stsc.hill.af.mil 25

Security in a COTS-Based Software System

certify internally seems the least desirable
of all options. When this path is taken,
the integrator purchases the components
that best meet their requirements and
then has these components certified to
the required level of compliance. The
integrator can select components that
meet functional requirements, but then
must bear the burden and expense of the
certification process. If the certification
fails, the integrator must then restart the
evaluation and selection process to iden-
tify other potential solutions and must
contend with the fact that they have pur-
chased software that has no value.

Security breaches in software are
caused by defective specification, design,
and implementation [3]. Lack of quality
in software creates openings through
which threats can be realized. Despite the
advances that the software industry has
made in development practices and
processes, the buffer overflow continues
to be the most frequently cited security
vulnerability according to a paper pub-
lished by the Oregon Graduate Institute
of Science and Technology [8]. Other
defects that lead to security breaches
include format bugs, resource leaks, hard-
coded path names, and malformed
inputs. Additionally, sloppy implementa-
tion of encryption algorithms, password
transmission routines, and graceful fail-
ures lead to security breaches.

Clearly software that has been devel-
oped and integrated by organizations that
have invested in putting proven software
engineering practices and processes in
place is going to reach security assurance
level compliance with less cost (and less
drama) than software developed in a
more ad-hoc fashion. The institutional-
ization of good software development
processes is an important factor to con-
sider when planning a project with secu-
rity constraints.

Another commonly cited cause for
vulnerabilities in software is the training
and expertise of the developers and inte-
grators of software systems. The success-
ful implementation of secure software
systems requires that security and quality
be considerations from day one. The
skills required to do this are not innate
and have not traditionally been stressed
as part of a typical computer science or
software engineering curriculum.
Although this condition is improving
with respect to good software develop-
ment practices, those skills related specif-
ically to security concerns continue to be
overlooked in many instances. The cost
impact of fixing a software system not
designed and implemented to be a secure,

defect-free system is substantially higher
than the cost of developing it from the
ground up.

Six Steps to a Successful
COTS Implementation
To understand the cost impacts of secu-
rity constraints on the development of a
COTS-based system, it is important to
first understand the activities that occur
during any successful COTS-based soft-
ware project. These activities are briefly
outlined below. Also, [1] and [4] present
more detailed descriptions of this
process. Research has indicated the
essential activities that must take place to
ensure successful COTS-based projects
are the following:
• Analyze software requirements.
• Evaluate and select COTS solution(s).
• Negotiate terms with vendors.
• Implement the COTS-based solution.
• Maintain license, subscription, and

royalty fees.
• Maintain and upgrade the COTS-

based solution.

Analyze Software Requirements
Software requirements analysis should
occur regardless of whether the decision
is made to build, buy, or borrow. A prop-
er understanding of system requirements
that are to be satisfied by software is
essential to a successful software project.
It is during the software requirements
analysis activity that decisions can be
made as to which requirements can be
satisfied with off-the-shelf components.

Evaluate and Select COTS
Solution(s)
Once a decision to pursue a COTS alter-
native is made, the first step is to deter-
mine the availability of COTS solutions
that have the potential to provide needed
functionality and evaluate these solutions.
The evaluation needs to be focused on
more than just product characteristics
such as functionality, architecture, and
technology, but also on vendor character-
istics such as maturity, stability, and abili-
ty to provide adequate support, training,
and documentation.

Negotiate Terms With COTS Vendors
Certainly it is important to negotiate the
best deal possible when working with one
or more vendors to craft a solution.
Vendors are much more likely to address
customer concerns with missing or
incomplete functionality as well as bugs
in the software before they sign on the
dotted line.

Implement the COTS-Based Solution
Once an analysis, evaluation, and selection
of a COTS-based solution is complete,
implementation can commence. Imple-
mentation includes the tailoring of the
COTS components; modifications to
COTS software (if this is possible and
desirable); design, code, and test of any
glue code required; and higher level inte-
grations of COTS components with other
components.

Maintain License, Subscription, and
Royalty Fees
License or maintenance fees need to be
paid to ensure updates and upgrades as
well as continuing support of the COTS
components.

Maintain and Upgrade the
COTS-Based Solution
Once the software is deployed, there are
several ongoing activities required to keep
it operational and keep end users happy.
These include the ongoing evaluation of
upgrades from the vendor, inclusion of
those upgrades when desirable, bug fixes
in glue code or to compensate for errors
in the COTS components the vendor will
not fix, and higher level integration as
upgrades and bug fixes are deployed.

Security Implications for the
Six Steps
The previous section outlined the activi-
ties that should take place, and thus
should be part of the plan, for the imple-
mentation of any COTS-based system.
This section looks at the additional factors
that must be considered when the COTS
implementation includes requirements to
comply with security constraints, and
highlights how those factors will impact
activity costs as compared to the costs of
those same activities with nominal securi-
ty constraints.

Analyze Software Requirements
During the Requirements Analysis activity,
functional security requirements need to
be analyzed, along with the non-function-
al ones. From a cost and planning per-
spective, these additional requirements
should be modeled as an additional func-
tional size that needs to be either devel-
oped or purchased and integrated.
Functional size can be any measure of
software size that relates to the amount of
user functionality that is being delivered
such as function points or feature points.
An additional cost consideration is the
amount of skill and expertise the integra-
tion team has with implementing secure



26 CROSSTALK The Journal of Defense Software Engineering November 2005

Software Engineering Technology

software systems. It is during the require-
ments analysis phase that the COTS selec-
tion strategy is likely to be determined.

Evaluate and Select COTS
Solution(s)
The COTS selection strategy plays a big
part in determining the impact of security
constraints on this activity. If the strategy
is to buy and wrap COTS components,
then the evaluation and selection activity
effort should focus entirely on the func-
tional requirements for which COTS com-
ponents are being considered, with little
attention paid to the security requirements
since this will be taken care of externally
to the COTS components. The cost
impacts of this activity would be a func-
tion of the total number of COTS solu-
tions available for consideration, along
with the number expected to be selected
for more detailed consideration. The deci-
sion to build a wrapper also impacts the
cost of glue code development (described
below) as the need for wrapper code
increases the amount and complexity of
glue code that must be developed.

If the strategy is to buy pre-certified
components, you would expect this to
have substantial impact on the amount of
time and effort associated with this activi-
ty. This strategy is likely to result in a
broader initial search for qualified COTS
components that meet the desired func-
tionality and security constraints, but then
a smaller set of candidate components
available for detailed evaluation. The cost
and effort impacts to this activity will be a
function of the security assurance level
required and the number of COTS com-
ponents available for evaluation that are
certified to that level.

The strategy to buy and certify com-
ponents is a bit riskier to predict with
respect to effort or cost because there is
an inherent risk that the evaluation
process may be revisited if internal cer-
tification fails for selected components.
Integrators should take steps to mitigate
this risk by only evaluating components
from vendors with documented soft-
ware development practices and proven
quality records. With such risk mitiga-
tion strategies in place, this activity
would consist of a broader initial search,
as all available components are con-
tenders followed by a more detailed eval-
uation of the few that appear to meet
high quality standards. Additionally, cer-
tification comes with its own costs,
including fees for laboratory testing,
modifications identified as the result of
this testing (if modifications are possible
and desired), collecting documentation

required for assurance, and fees to certi-
fication agencies.

The cost and effort impacts to this
activity will be driven by the security assur-
ance level required, the number of COTS
components likely to be certified to that
level, the functional size and complexity of
the COTS components that require certi-
fication, and the state and availability of
documentation.

Negotiate Terms With COTS Vendors
If the strategy is buy and wrap, then nego-
tiations with vendors should not be
impacted by security constraints. Vendor
pre-certification is unlikely to impact the
negotiations process either, unless the pre-
certification is being done as part of the
negotiated terms of the contract. If the
certification is being performed by the
integrating organization, the terms of the
contract should include actions to be
taken if COTS components fail to meet
any promises made with respect to quality
or security.

Implement the COTS-Based Solution
The implementation activities for a
COTS-based solution can be affected by
security constraints in various ways. As
with previous activities, the selection strat-
egy determines which activities are affect-
ed and to what extent.
• Tailoring of COTS solution.

Security-specific tailoring tasks should
be handled as part of the functional
requirements for the system. The
impact to the cost of this activity
would be a function of the functional
size imposed through those require-
ments.

• Modification of COTS software. If
the buy and wrap strategy is in place,
the costs of modifications should not
change regardless of security require-
ments as the wrapper has isolated the
COTS component from the rest of
the system in a secure cocoon. If the

COTS components are pre-certified or
internally certified and then modified
by the integrator, an entire recertifica-
tion must be accomplished, most like-
ly at the cost of the integrator. The
cost and effort for this activity would
be driven by the security assurance
level required and the functional size
of the COTS component(s) that are
modified. Institutionalized software
development practices and security
expertise would mitigate some of the
costs of this process.

• Design, code, and test of glue
code. When a buy-and-wrap strategy
is employed, the glue code size should
be expanded to include the amount of
wrapper code that must be developed.
The cost of the development of this
wrapper code, along with any other
glue code that is written, will be
impacted by the security assurance
level required. This impact can be sub-
stantially mitigated when software
development practices are institution-
alized and when the integration team
has training and experience in develop-
ing secure software.

• Integration of COTS components
with other COTS or custom com-
ponents. Integration and test are
where the rubber meets the road. As
with other non-functional require-
ments, security requirements are not
fully testable until all the pieces of the
system are working together. It is pos-
sible that certain combinations of
components create security vulnerabil-
ities where none existed within the
individual components. Regardless of
selection strategy, this activity will be
impacted. Extent of this impact is
determined by the security assurance
level required, but is mitigated when
good software development practices
are institutionalized and the integra-
tion team contains members with
security training and experience.

Maintain License, Subscription, and
Royalty Fees
If the strategy is buy and wrap, this activ-
ity is unlikely to be impacted by security
assurance requirements. If COTS compo-
nents are pre-certified or internally certi-
fied, renewal time is the time to ensure
that promises with respect to security and
quality are being maintained as the COTS
products are upgraded over time.

Maintenance and Upgrade of the
COTS-Based Solution
Maintenance of any COTS-based system
can be problematic, particularly as the

“It is during the software
requirements analysis

activity that decisions can
be made as to which
requirements can be

satisfied with off-the-shelf
components.”



November 2005 www.stsc.hill.af.mil 27

Security in a COTS-Based Software System

number of different vendors increases.
Security constraints further complicate the
maintenance and upgrade activities.
• Evaluation and inclusion of

updates and upgrades from the
vendor. When a buy-and-wrap strate-
gy is employed, the inclusion of
upgrades may require modifications to
wrapper code to accommodate new or
changed interfaces. Upgrades for inter-
nally certified components would
require recertification. One would
expect that precertified components
would recertify with each upgrade and
update. Regardless of selection strate-
gy, upgrades and updates require some
level of integration and test at the sys-
tem level to ensure that security con-
straints are still met by the system. The
cost of this activity is driven by the
security assurance level, but is mitigat-
ed by good development practices,
training, and expertise.

• Bug Fixes. Regardless of selection
strategy, bug fixes will require some
level of reintegration and test, which
requires reverification at the system (or
subsystem) level that these fixes have
not introduced security vulnerabilities.
Additionally, if fixes are made to
COTS components or to modifica-
tions made to those components, the
entire certification process for that
component must be recertified. The
cost and effort of this activity is driven
by the security assurance level, as well
as the amount of glue code and modi-
fied code being maintained. This cost
can be mitigated with the institutional-
ization of good software development
practices and an integration team with
security training and expertise.

Conclusions
More and more, integrators are being
asked to deliver software systems that
meet high-level security constraints while
delivering most (if not all) of their func-
tionality using off-the-shelf components.
As integrators are just beginning to under-
stand all of the issues associated with a
successful COTS-based software project,
they now have to understand how securi-
ty assurance requirements will impact
those issues and what new issues will be
introduced.

Security constraints impact a project in
two ways. Functional security requirements
increase the functional size of the software
system being developed and need to be
treated in the same way as all other func-
tional requirements being met by COTS
components or homegrown code. Non-
functional security requirements to attain a

specific level of security assurance require
additional processes, documentation, test-
ing, and verifications. The additional focus
on these activities will result in additional
cost to COTS integrators. Most security
vulnerability in software is a result of poor
quality and poor or inconsistent software
development practices. By improving
these practices and employing people with
expertise in security and excellent soft-
ware development skills, integrators can
reduce the cost increases driven by
requirements for security.

This article reviewed the impacts of
security constraints on the cost of a proj-
ect to deliver COTS-based software sys-
tems. It reviewed these impacts in the
context of the activities required to suc-
cessfully implement a COTS-based sys-
tem and highlighted those areas where
security constraints apply. The security-
related factors found most likely to impact
costs were the COTS selection strategy
employed and the security assurance level
required. In organizations where invest-
ments have already been made to institu-
tionalize good software development
processes and hire people with the train-
ing and experience to deliver secure,
defect-free software, the cost impact of
security requirements is less severe.u

References
1. Minkiewicz, A. “The Six Steps to a

Successful COTS Implementation.”
CrossTalk Aug. 2005 <www.stsc.
hill.af.mil/crosstalk/2005/08/0508
Minkiewicz.html>.

2. The White House. “National Strategy
to Secure Cyberspace.” Feb. 2003
<www.whitehouse.gov/pcipb>.

3. Software Process Subgroup of the
Task Force on Security Across the
Software Development Life Cycle.
“Process to Produce Secure Software.”
National Cyber Security Summit, Mar.
2004.

4. The National Institute of Standards
and Technology and the National
Security Agency. “Common Criteria
for Information Technology Security
Evaluation, Vers. 2.1.” National Insti-
tute of Standards and Technology.
Aug. 1999 <http://csrc.nist.gov/cc>.

5. Minkiewicz, A. “The Real Costs of
Developing a COTS-Based System.”
Proc. for IEEE Conference on
Aerospace and Defense, Big Sky
Montana, Mar. 2004.

6. Center for Software Engineering.
“CoCOTS White Paper.” Los Angeles,
CA: University of Southern California,
June 1997 <http://sunset.usc.edu/
research/COCOTS/cocots_main.

html>.
7. Reifer, D., et al. “Estimating the Cost

of Security for COTS Software.” 2nd
International Conference on COTS-
Based Software Systems. Los Angeles,
CA. Mar. 2003.

8. Festa, P. “Study Says Buffer Overflow
Is Most Common Security Bug.” C-
Net news.com 23 Nov. 1999 <http://
news.com.com>.

About the Author

Arlene F. Minkiewicz
is chief scientist of the
Cost Research Depart-
ment at PRICE Systems.
She is responsible for the
research and analysis

necessary to keep the suite of PRICE
estimating products responsive to cur-
rent cost trends. In her 20-year tenure
with PRICE, Minkiewicz has researched
and developed the software cost estimat-
ing relationships that were the corner-
stone for PRICE’s commercial software
cost estimating model, ForeSight, and
invented the Cost Estimating Wizards
originally used in ForeSight that walk the
user through a series of high-level ques-
tions to produce a quick cost analysis. As
part of this effort, she invented a sizing
measurement paradigm for object-ori-
ented analysis and design that allows
estimators a more efficient and effective
way to estimate software size. She
recently received awards from the
International Society of Parametric
Analysts and the Society of Cost
Estimating and Analysis. Minkiewicz
contributed to a new parametric cost
estimating book with the Consortium
for Advanced Manufacturing Inter-
national called “The Closed Loop:
Implementing Activity-Based Planning
and Budgeting,” and she frequently pub-
lishes articles on software estimation and
measurement. She has been a contribut-
ing author for several books on software
measurement and speaks frequently on
this topic at numerous conferences.

PRICE Systems
17000 Commerce PKWY STE A
Mt. Laurel, NJ 08054
Phone: (856) 608-7222
Fax: (856) 608-7247
E-mail: arlene.minkiewicz@

pricesystems.com


